

Never Stand Still

Faculty of Engineering

School of Photovoltaic & Renewable Energy Engineering

UNSW 22nd May 2014

Brett Hallam

Overview

- Introduction Laser doping
- Continuous Wave Laser Doping for Deep Junction Formation
- Modelling Diffusion in Laser Doped Regions
- Laser doping from AI_2O_3
- Contacting Buried Layers in Silicon Solar Cells
- Passivation of Laser-Induced Defects

Introduction – Laser Doping

Laser Doping

- Perform diffusion in liquid phase
 - Diffusion coefficients many orders of magnitude higher than in the solid state
- First demonstrated < 1970 [Fairfield 1968]
- Variety of approaches
 - LD from ion implanted dopants or PSG layer
 - SOD layer application
 - Gas immersion laser doping
 - Laser chemical processing

Defect Generation during Laser Doping

- Laser-induced defects have hampered performance of laser doped solar cells
- Defect generation is a complex process dependent on:
 - Orientation of silicon
 - Purity of dopant sources
 - Pulse energy
 - Repetition frequency
 - Dielectric layers
- Avoiding performance degradation
 - Perform laser doping on bare silicon
 - Use an intermediate SiO₂ layer
 - Use continuous wave lasers

Self-aligned Laser Doped Selective Emitter

- Self-aligned process compatible with light-induced plated contacts [Wenham1998]
 - Simultaneous opening of dielectric / doping of silicon
 - Contacts < 30 µm

S. R. Wenham and M. A. Green. Self Aligning Method for Forming A Selective Emitter and Metallization in a Solar Cell. US Patent No. 6429039, August 2002.

Junction Depth Limitations

- Solidification between successive pulses greatly limits junction depths.
- Longer pulses are required to form deep molten regions without ablation of the silicon

Figure source: J. Kohler et al. Proceedings of the 24th European Photovoltaic Solar Energy Conference, pp. 1847-1850 (2009)

Continuous Wave Laser Doping for Deep Junction Formation

Deep Junction Formation through CW Laser Doping

- CW lasers allow for a deep molten region to form (> 10 μm)
 - Silicon remains molten throughout process
- Junction depth can be controlled be processing speed

Point Contact Formation

- Point contacts formed using CW laser and physical mask
 - Junction depths over 8 µm
 - \rightarrow Small contacts with effective doping

n-type LD on a textured surface (0.5 m/s)

Dopant Profiles in Laser Doped Regions

- Dopant profiles in laser doped region aren't always uniform
 - Depends on z, D, t

SIMS Profiles of Laser Doped Regions

- CW laser doped regions appear Gaussian for processing speeds of 2 m/s and above
- Characteristic kink for 0.5 m/s profile
- Similar kink for Q-CW laser at 2 m/s
- Artefacts due to multiple laser passes/pulses?

Modelling Diffusion Profiles

SIMS Profiles of Laser Doped Regions

- Gaussian diffusion theory closely matches profile
 - Discrepancy in intermediate depths
- Silicon remains molten for Q-CW lasers

SIMS Profiles of Laser Doped Regions

- Gaussian diffusion theory closely matches profile
 - Discrepancy in intermediate depths
- Silicon remains molten for Q-CW lasers

Gaussian Model in the Molten Region

- Single time-step 2 μs, single Gaussian profile seeded from z=5 μm
- 1000 time-steps, seed Gaussian profile from each depth (z_k) at each time-step (t_i)

Influence of the Solid/Liquid Interface

Presence of a solid/liquid interface changes the dopant profile

 \rightarrow Build up of dopants at solid/liquid interface

Influence of the Solid/Liquid Interface

Presence of a solid/liquid interface changes the dopant profile

 \rightarrow Build up of dopants at solid/liquid interface

- $Z_M \sim f(x) \rightarrow f(t)$
- Modify cross sectional dopant profile by depth factor (Z_F) and time dilation factor $(T_F) \rightarrow Z_M = Z_F f(t/T_F)$
- Clear influence of position of solid/liquid interface on profile

x (μm)

20

- $Z_M \sim f(x) \rightarrow f(t)$
- Modify cross sectional dopant profile by depth factor (Z_F) and time dilation factor $(T_F) \rightarrow Z_M = Z_F f(t/T_F)$
- Clear influence of position of solid/liquid interface on profile

- Influence of the solid/liquid interface can accurately describe the SIMS profiles
- Doesn't work for 0.5 m/s \rightarrow multiple passes?

- Influence of the solid/liquid interface can accurately describe the SIMS profiles
- Doesn't work for 0.5 m/s \rightarrow multiple passes?

Partial Solidification for Q-CW Laser Doping

- Q-CW laser doped regions can be represented by a single effective pulse with a reduced melt depth
 - → Represent a partial solidification between successive pulses (80 MHz) for the larger depths

Laser Doping from Al₂O₃ Layers

Effective Doping from Al₂O₃ Layers

- Effective doping from Al₂O₃ layers
 - Solid state diffusion in peripheral regions?
- Up to 35% utilisation of AI atoms from AI₂O₃ layers (10 nm)
- Much higher doping concentrations than conventional BSF (~2x10¹⁸ /cm³)

Contact formation by Al₂O₃ Laser Doping

- Stack of ~5 µm opening (10 m/s through 10nm Al₂O₃/ 50nm SiO_x)
- Increasing iV_{OC} / τ_{eff} with increasing speed
 - Avoidance of bulk defects

Dependence of Dielectric Layers / SOD

 Results dependent on dielectric stack / presence of additional dopants

Cell Fabrication with Al₂O₃ Laser Doping

PERL

n⁺ emitter

PECVD SiO, or SiN, capping layer

Laser doped

Al p⁺⁺ region

Textured front

with SiO₂/SiN₂

ALD Al₂O₃

Ni/Cu/Ag plated contact

Laser

ablated

opening

p-type CZ

PVD AI

PECVD SiO_x/SiN_x capping layer

Process	J _{SC} (mA/cm ²)	V _{oc} (mV)	FF (%)	pFF (%)	η (%)
PERC (Av)	39.4 ± 0.2	659 ± 3	79.7 ± 0.3	82.0 ± 0.2	20.4 ± 0.2
PERL (Av)	39.5 ± 0.1	653 ± 3	79.2 ± 0.4	82.4 ± 0.1	20.4 ± 0.2
PERL* (best)	39.4	657	79.9	-	20.7

- Incorporation of LDSE front \rightarrow + 0.4% efficiency (21.1%)
- Incorporation of improved hydrogenation
 → increase V_{OC} > 680 mV, J_{SC} ~ 40 mA/cm² (21.8%)

imec

Contacting Buried Layers in Silicon Solar Cells

The Need to Contact Buried Layers

- Contacting buried layers in silicon solar cells requires complex processing
 - Masking/etching

P. Altermatt et al. Journal of Applied Physics, Vol. 80, pp. 3574 (1996). N. Harder et al. physica status solidi RRL, Vol. 2, No. 4, pp. 148 (2008). W. P. Mulligan et al. Proc. of the 19th EU PVSEC, pp 387 (2004). M. Green et al. Solar Energy, Vol. 77, No. 6, pp. 857 (2004).

Laser Doping for Contact Buried Layers

- Single self-aligned process to contact layer under the surface
 - No masking/etching
 - Single conventional thermal diffusion

Contacting Buried Layers for IBC Cells

- Successful demonstration of penetrating through an industrial phosphorus emitter (120 Ω /sq) with boron laser doping
 - No masking/etching
 - IBC solar cells with single thermal diffusion and two alignment steps
 - →14.5% efficiency in initial trials [Chan 2012]

p-type LD on a textured phosphorus emitter (0.2 m/s)

C. Chan, B. Hallam and S. Wenham. Energy Procedia, Vol. 27, pp. 543 (2012).

Transistor formation

 Changing process conditions / emitter profile can result in transistor formation

Transistor formation

 Changing process conditions / emitter profile can result in transistor formation

Passivation of Laser-Induced Defects

Void Formation during CW Laser Doping

- Voids can form with diameters > 4 um
- Dependent on speed / SOD / dielectric layer
 - Most prevalent at 0.5 m/s

Crystallographic Defect Formation

 Crystallographic defects are evident for processing speeds < 0.5 m/s

0.1 m/s

0.01 m/s

Pinhole Formation in Dielectrics

- Pinhole formation in dielectrics beyond opened region
 - Require doping to protect against recombination

Passivation of Laser-Induced Defects

- Laser processing can introduce bulk/surface defects
- H a key to passivating laser-induced defects
 → Annealing 1-2 min @ 400°C utilising H in the the wafer
- Ni sinter can also be used for H passivation

Process	J _{sc} (mA/cm²)	V _{oc} (mV)	FF (%)	pFF (%)	η (%)	
No anneal (Av)	37.78	627.4	77.42	83.2	18.35	
Anneal (Av)	37.69	636.7	77.97	83.6	18.71	650
		+10 mV		+0.4%	+0.35	
						ມ 0 630
						620
						610
A	I-BSF	LD		Annea		600

Bulk and Surface Damage from LD

- Test structure n⁺/p/n⁺ passivated by SiON:H
- H passivation (400 °C in N₂) reduces J_{0d} and increases τ_{bulk}
- Laser doping damages bulk
- Subsequent anneal passivates laser-induced defects

Process	iV _{oc}	J _{0d}	τ _{bulk}	
	(mV)	(fA/cm²)	(μs)	
As-dep	648	140	129	

High Voltage Test Structures

- Modification of PECVD process to enhance hydrogen passivation (only little extra improvement from P2)
 - Enhanced H-radical incorporation into SiN and Si
- Laser processing generates defects
- H passivation important for laser induced defects
 - Up to 1% absolute increase in efficiency observed so far
 - Can recover ~40 mV iV_{OC}, substantial increases in J_{SC} and pFF $\ _{-}$

720

Passivation of Laser-Induced Defects for n-PERT

- Similar effect for passivation of laser-induced defects on n-PERT solar cells
- 15 mV improvement through passivation of laser-induced defects
 iv/ still limited by busher region (20 m)/ lower)
- iV_{OC} still limited by busbar region (20 mV lower)
 710 mV
 670 mV
 685 mV

Improvement in passivation for n-PERT

 Standard IMEC Ni sintering process (SS) reasonably ineffective for hydrogen passivation of laser-induced defects

Efficiency enhancement for n-PERT through passivation of laser-induced defects

- 0.7% efficiency increase through hydrogen passivation of laser-induced defects
- Further efficiency increases through improved hydrogen passivation of other defects in the device

+0.3 mA/cm ² +15 mV +0				+0.2%	+0.7%
Process	J _{sc} (mA/cm²)	V _{oc} (mV)	FF (%)	pFF (%)	η (%)
No anneal 1.5 mm (Av)	39.19	648.4	77.97	82.18	19.81
Anneal 1.5 mm (Av)	39.48	664.1	78.34	82.42	20.54
No anneal 1.0 mm (Av)	38.23	643.2	79.56	82.13	19.56
Anneal 1.0 mm (Av)	38.75	657.1	79.53	82.26	20.25

imec

Thank you for your attention

brett.hallam@unsw.edu.au

